Convex Optimization Problem IV

Jong-June Jeon
Fall, 2023
Department of Statistics, University of Seoul

Things to know

- Operation preserving convexity
- Examples of convex functions
- Quasiconvex function

Operations preserving convexity

Nonnegative weighted sums
If f_{i} for $i=1, \cdots, m$ are convex and $w_{i} \geq 0$, then $g(x)=\sum_{i=1}^{m} w_{i} f_{i}(x)$ is convex.
If $f(x, y)$ is convex in x for each $y \in \mathcal{A}$, and $w(y) \geq 0$ for each $y \in \mathcal{A}$, then

$$
g(x)=\int_{\mathcal{A}} w(y) f(x, y) d y
$$

is convex in x.

Let $w_{i} \geq 0$ then $w_{i} f_{i}(\lambda x+(1-\lambda) y) \leq \lambda w_{i} f_{i}(x)+(1-\lambda) w_{i} f_{i}(y)$ for all i and $\lambda \in[0,1]$.

$$
\begin{aligned}
g(\lambda x+(1-\lambda) y) & =\sum_{i} w_{i} f_{i}(\lambda x+(1-\lambda) y) \\
& \leq \sum_{i} \lambda w_{i} f_{i}(x)+(1-\lambda) w_{i} f_{i}(y) \\
& =\lambda g(x)+(1-\lambda) g(y)
\end{aligned}
$$

Composition with an affine mapping
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^{n}$. If f is convex, then

$$
g(x)=f(A x+b)
$$

is also convex.

Pointwise maximum function and supremum
If f_{1} and f_{2} are convex, then $f(x)=\max \left(f_{1}(x), f_{2}(x)\right)$ with $\left.\operatorname{dom}(f)=\operatorname{dom}\left(f_{1}\right) \cap \operatorname{dom}\left(f_{2}\right)\right)$ is convex. Generally, if f_{1}, \cdots, f_{m} are convex, then

$$
f(x)=\max \left(f_{1}(x), \cdots, f_{m}(x)\right)
$$

is convex.

$$
\text { (proof) } f_{i}(\lambda x+(1-\lambda) y) \leq \lambda f_{i}(x)+(1-\lambda) f_{i}(y) \text { for all } i \text { and } \lambda \in[0,1] \text {. }
$$

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & =\max _{i} f_{i}(\lambda x+(1-\lambda) y) \\
& \leq \max _{i} \lambda f_{i}(x)+(1-\lambda) f_{i}(y) \\
& \leq \max _{i} \lambda f_{i}(x)+\max _{i}(1-\lambda) f_{i}(y) \\
& =\lambda \max _{i} f_{i}(x)+(1-\lambda) \max _{i} f_{i}(y) \\
& =\lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

$\underline{\text { Pointwise maximum and supremum }}$
If $f(x, y)$ is convex in x for each $y \in \mathcal{A}$,

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y)
$$

is convex in x.

Example 1

- $f: x \mapsto \max \left\{a_{1}^{\top} x+b_{1}, \cdots, a_{m}^{\top} x+b_{m}\right\}$ is convex.
- Let $x \in \mathbb{R}^{n}$ and $x_{[i]}$ be the i th largest component of x. Then $f(x)=\sum_{i=1}^{r} x_{[i]}$ is convex.
(proof)

$$
f(x)=\max \left\{x_{i_{1}}+\cdots+x_{i_{r}}: 1 \leq i_{1}<\cdots<i_{r} \leq n\right\}
$$

Since $f(x)$ is the maximum of affine functions, f is convex.
Check the convexity of $f(x)=\sum_{i=1}^{r} w_{i} x_{[i]}$.

Example 2 (Distance to the farthest point of a set)

Let $C \subset \mathbb{R}^{n}$.

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

is convex.
(proof) $g(x, y)=\|x-y\|$ is convex. Thus, $\sup _{y \in C} g(x, y)$ is convex.

Example 3 (Maximum eigenvalue of a symmetric matrix)

$f: X \in \mathcal{S}^{m} \mapsto \lambda_{\max }(X) \in \mathbb{R}$.

$$
f(X)=\sup \left\{y^{\top} X y:\|y\|=1\right\}
$$

Let $g:(X, y) \in \mathcal{S}^{n} \times \mathbb{R}^{m} \mapsto y^{\top} X t \in \mathbb{R}$, then $g(X, y)$ is linear for a fixed y. Thus, f is a pointwise maximum of $g(X, y)$, and it is convex.

Definition 4 (convex optimization problem)

- $f_{0}: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex function.
- $C=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \leq 0, h_{j}(x)=0\right.$ for all $\left.i, j \geq 1\right\}$ is convex set where $f_{i}, h_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x) \\
& \text { subject to } f_{i}(x) \leq 0, \quad i=1, \cdots, p \\
& \qquad h_{j}(x)=0 \quad j=1, \cdots, m
\end{aligned}
$$

Note that

- If f_{i} is convex then $\left\{x: f_{i}(x) \leq 0\right\}$ is convex set.
- If h_{j} is affine then $\left\{x: h_{j}(x)=0\right\}$ is convex set.
- Any finite intersection of convex sets is convex.

Example 5 (See the proof in p.73-74)

- Quadratic over linear function (convex): $f(x, y)=x^{2} / y$, with

$$
\operatorname{dom} f=\mathbb{R} \times \mathbb{R}_{++}
$$

- Log-sum-exp (convex): $f(x)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$
- Geometric mean (concave)
- Log-determinant (concave)
proof of Geometric mean $f: x \in \mathbb{R}_{++}^{n} \mapsto\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \in \mathbb{R}$ is concave.

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x_{j}} & =\prod_{i \neq j} x_{i}^{1 / n} \times \frac{1}{n} x_{j}^{1 / n-1}=\left(\frac{1}{n} \prod_{i=1}^{n} x_{i}^{1 / n}\right) \frac{1}{x_{j}} \\
\frac{\partial^{2} f(x)}{\partial x_{j}^{2}} & =-\frac{1}{n} \frac{(n-1)}{n} \prod_{i \neq j} x_{i}^{1 / n} x_{j}^{1 / n-2}=-\left(\frac{1}{n} \frac{(n-1)}{n} \prod_{i=1}^{n} x_{i}^{1 / n}\right) \frac{1}{x_{j}^{2}} \\
\frac{\partial^{2} f(x)}{\partial x_{j} \partial x_{k}} & =\frac{1}{n^{2}}\left(\prod_{i=1}^{n} x_{i}^{1 / n}\right) \frac{1}{x_{j}} \frac{1}{x_{k}}
\end{aligned}
$$

Let $z=\left(z_{1}, \cdots, z_{n}\right)^{\top}=\left(1 / x_{1}, \cdots, 1 / x_{n}\right)^{\top}$ then

$$
\nabla^{2} f(x)=-\frac{1}{n^{2}}\left(n \operatorname{diag}\left(z_{1}^{2}, \cdots, z_{n}^{2}\right)-z z^{\top}\right)
$$

Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $v=\left(a_{1} z_{1}, \cdots, a_{n} z_{n}\right)$ then

$$
\begin{aligned}
a^{\top} \nabla^{2} f(x) a & =-\frac{1}{n^{2}}\left(n \sum_{i=1}^{n} a_{i}^{2} z_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} z_{i}\right)^{2}\right) \\
& =-\frac{1}{n^{2}}\left(\|1\|^{2}\|v\|^{2}-<1, v>^{2}\right) \leq 0
\end{aligned}
$$

The inequality holds by Cauchy inequality. Therefore f is concave.

Example 6 (Linear regression)

Let $\left(y_{i}, x_{i}\right) \in \mathbb{R} \times \mathbb{R}^{p}$ for $i=1, \cdots, n$ be response-covariate pairs and the objective function of linear regression is given by

$$
\begin{aligned}
L(\boldsymbol{\beta}) & =\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\top} \boldsymbol{\beta}\right)^{2} \\
& =\frac{1}{2} \boldsymbol{\beta}^{\top}\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) \boldsymbol{\beta}-\left(\sum_{i=1}^{n} y_{i} x_{i}\right)^{\top} \boldsymbol{\beta}+\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2} .
\end{aligned}
$$

Let $A=\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right), b=\sum_{i=1}^{n} y_{i} x_{i}$ and $c=\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}$ then

$$
L(\boldsymbol{\beta})=\frac{1}{2} \boldsymbol{\beta}^{\top} A \boldsymbol{\beta}-b^{\top} \boldsymbol{\beta}+c,
$$

a quadratic function.
A is semi-positive definite because

$$
u^{\top}\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right) u=\sum_{i=1}^{n}\left(x_{i}^{\top} u\right)^{\top}\left(x_{i}^{\top} u\right)=\sum_{i=1}^{n}\left\|x_{i}^{\top} u\right\|^{2} \geq 0
$$

for all $u \in \mathbb{R}^{p}$. Thus, $L(\boldsymbol{\beta})$ is convex.

Example 7 (Logistic regression)

Let $\left(y_{i}, x_{i}\right) \in\{0,1\} \times \mathbb{R}^{p}$ for $i=1, \cdots, n$ be response-covariate pairs and the objective function (negative loglikelihood) is given by

$$
L(\boldsymbol{\beta})=-\sum_{i=1}^{n} y_{i} x_{i}^{\top} \boldsymbol{\beta}+\sum_{i=1}^{n} \log \left(1+\exp \left(x_{i}^{\top} \boldsymbol{\beta}\right)\right) .
$$

The hessian matrix of $L(\boldsymbol{\beta})$ is

$$
H(\boldsymbol{\beta})=\sum_{i=1}^{n}\left(x_{i} x_{i}^{\top} \frac{\exp \left(x_{i}^{\top} \boldsymbol{\beta}\right)}{\left(1+\exp \left(x_{i}^{\top} \boldsymbol{\beta}\right)\right)} \frac{1}{\left(1+\exp \left(x_{i}^{\top} \boldsymbol{\beta}\right)\right)}\right) .
$$

Let $p\left(x_{i} ; \beta\right)=\frac{\exp \left(x_{i}^{\top} \beta\right)}{\left(1+\exp \left(x_{i}^{\top} \beta\right)\right)}$.

$$
\begin{aligned}
u^{\top} H(\boldsymbol{\beta}) u & =\sum_{i=1}^{n} u^{\top}\left(x_{i} x_{i}^{\top} p\left(x_{i} ; \beta\right)\left(1-p\left(x_{i} ; \beta\right)\right)\right) u^{\top} \\
& =\sum_{i}\left\|\sqrt{p\left(x_{i} ; \beta\right)\left(1-p\left(x_{i} ; \beta\right)\right.} x_{i}^{\top} u\right\|^{2} \\
& \geq\left(\min _{i}\left\{p\left(x_{i} ; \beta\right)\left(1-p\left(x_{i} ; \beta\right)\right\}\right) \sum_{i}\left\|x_{i}^{\top} u\right\|^{2} \geq 0\right.
\end{aligned}
$$

for all u.

Example 8 (Linear support vector machine)

Let $\left(y_{i}, x_{i}\right) \in\{-1,1\} \times \mathbb{R}^{p}$ for $i=1, \cdots, n$ be response-covariate pairs and the objective function is given by

$$
L_{\lambda}(\boldsymbol{\beta})=\sum_{i=1}^{n} \max \left(0,1-y_{i} x_{i}^{\top} \boldsymbol{\beta}\right)+\lambda \sum_{j=1}^{p} \beta_{j}^{2}
$$

Since $l(t)=\max (0, t)$ is convex, it is easily shown that $L_{\lambda}(\boldsymbol{\beta})$ is convex.

Definition 9 (Conjugate function)

Let $f: \mathbb{R}^{n} \mapsto \mathbb{R} . f^{*}: \mathbb{R}^{n} \mapsto \mathbb{R}$ is defined as

$$
f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right)
$$

- f^{*} is always convex.
- If f is convex and closed, then $f^{* *}=f$.

Example 10

- $f(x)=a x+b: \operatorname{dom}\left(f^{*}\right)=\{a\}$ and $f^{*}(y)=-b$
- $f(x)=\exp (x): f^{*}(y)=y \log y-y$ with $\operatorname{dom}\left(f^{*}\right)=\mathbb{R}_{+}$
- $f(x)=(1 / 2) x^{\top} Q x$ with $Q \in \mathcal{S}_{+}^{n}+: f^{*}(y)=(1 / 2) y^{\top} Q^{-1} y$

Theorem 11 (Fenchel inequality)

$$
f(x)+f^{*}(y) \geq x^{\top} y
$$

for all x, y. This is called Fenchel's inequality.

Example 12

$f(x)=(1 / 2) x^{\top} Q x$ with $Q \in \mathcal{S}_{++}^{n}$. Then,

$$
x^{\top} y \leq(1 / 2) x^{\top} Q x+(1 / 2) y^{\top} Q^{-1} y
$$

If f is convex and differentiable. Let x^{*} be maximizer of $y^{\top} x-f(x)$ satisfying $y=\nabla f\left(x^{*}\right)$. Then,

$$
f^{*}(y)=x^{* \top} \nabla f\left(x^{*}\right)-f\left(x^{*}\right)
$$

Thus, by solving $y=f(z)$ for each y, we can obtain $f^{*}(y)=z^{\top} \nabla f(z)-f(z)$.

1. For $a>0$ and $b \in \mathbb{R}$ the conjugate function of $g(x)=a f(x)+b$ is

$$
g^{*}(y)=a f^{*}(y / a)-b
$$

2. For a nonsingular $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$ let $g(x)=f(A x+b)$.

$$
g^{*}(y)=f^{*}\left(A^{-\top} y\right)-b^{\top} A^{-\top} y
$$

3. If $f(u, v)=f_{1}(u)+f_{2}(v)$, where f_{1} and f_{2}. Then

$$
f^{*}(w, z)=f_{1}^{*}(w)+f_{2}^{*}(z)
$$

(proof of 2)

$$
\begin{aligned}
g^{*}(y) & =\sup _{x}\left(y^{\top} x-f(A x+b)\right) \\
& =\sup _{x} y^{\top}\left(A^{-1}(A x+b)-y^{\top} A^{-1} b-f(A x+b)\right) \\
& =\sup _{x}\left(\left(A^{-\top} y\right)^{\top}(A x+b)-f(A x+b)\right)-y^{\top} A^{-1} b \\
& =f^{*}\left(A^{-\top} y\right)-b^{\top} A^{-\top} y
\end{aligned}
$$

Definition 13 (Quasiconvex function)

- A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is called quasiconvex if

$$
S_{\alpha}(f)=\{x \in \operatorname{dom}(f): f(x) \leq \alpha\}
$$

for $\alpha \in \mathbb{R}$ is convex.

- If $-f$ is quasiconvex, then f is called quasiconcave.
- If f is quasiconvex and quasiconcave as well, then f is called quasilinear.
- If f is convex, f is quasiconvex.
- f is quasiconvex if and only if $\{x: f(x) \geq \alpha\}$ is convex.
- f is quasilinear then $\{x: f(x)=\alpha\}$ is convex.

Proposition 1 (Definition of the quasiconvex function)

$S_{\alpha}(f)$ is convex if and only if

$$
f(\lambda x+(1-\lambda) y) \leq \max (f(x), f(y))
$$

for $\lambda \in[0,1]$.
(proof \rightarrow) For arbitrary x and y, let $\alpha=\max (f(x), f(y))$. By definition of α-level set, $x, y \in$ $S_{\alpha}(f)$. Since $S_{\alpha}(f)$ is convex, $\left.\lambda x+(1-\lambda) y\right) \in S_{\alpha}(f)$. Thus, $f(\lambda x+(1-\lambda) y) \leq \alpha=$ $\max (f(x), f(y))$. The converse is trivial.

Example 14

- $\log x$ on \mathbb{R}_{++}is quasiconvex and quasiconcave. So it is quasilinear.
- $\operatorname{ceil}(x)=\inf \{z \in Z: z \geq z\}$ is quasiconvex and quasiconcave.
- Linear-fractional function:

$$
f(x)=\frac{a^{\top} x+b}{c^{\top} x+d}
$$

with $\operatorname{dom}(f)=\left\{x: c^{\top} x+d>0\right\}$ is quasiconvex and quasiconcave.

Prove the following statements.

- Support function S_{C} associated with the set C is defined as

$$
S_{C}(x)=\sup \left\{x^{\top} y: y \in C\right\}
$$

is convex.

- Let $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and define

$$
f^{*}: y \in \mathbb{R}^{n} \mapsto \sup \left\{x^{\top} y-f(x)\right\},
$$

the conjugate function of f. Then, f^{*} is always convex.

HW

Prob set. Ch3

- 3.4-3.7
- 3.12, 3.13
- 3.21-3.23
- 3.26, 3.28, 3.30, 3.31
- $3.42,3.43$

