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Things to know

• Operation preserving convexity

• Examples of convex functions

• Quasiconvex function
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Operations preserving convexity
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Nonnegative weighted sums

If fi for i = 1, · · · ,m are convex and wi ≥ 0, then g(x) =
∑m
i=1 wifi(x) is convex.

If f(x, y) is convex in x for each y ∈ A, and w(y) ≥ 0 for each y ∈ A, then

g(x) =

∫
A
w(y)f(x, y)dy

is convex in x.
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Let wi ≥ 0 then wifi(λx+ (1− λ)y) ≤ λwifi(x) + (1− λ)wifi(y) for all i and λ ∈ [0, 1].

g(λx+ (1− λ)y) =
∑
i

wifi(λx+ (1− λ)y)

≤
∑
i

λwifi(x) + (1− λ)wifi(y)

= λg(x) + (1− λ)g(y).
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Composition with an affine mapping

Let f : Rn → R, A ∈ Rn×m, and b ∈ Rn. If f is convex, then

g(x) = f(Ax+ b)

is also convex.
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Pointwise maximum function and supremum

If f1 and f2 are convex, then f(x) = max(f1(x), f2(x)) with dom(f) = dom(f1) ∩ dom(f2)) is

convex. Generally, if f1, · · · , fm are convex, then

f(x) = max(f1(x), · · · , fm(x))

is convex.
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(proof) fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y) for all i and λ ∈ [0, 1].

f(λx+ (1− λ)y) = max
i
fi(λx+ (1− λ)y)

≤ max
i
λfi(x) + (1− λ)fi(y)

≤ max
i
λfi(x) + max

i
(1− λ)fi(y)

= λmax
i
fi(x) + (1− λ)max

i
fi(y)

= λf(x) + (1− λ)f(y),
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Pointwise maximum and supremum

If f(x, y) is convex in x for each y ∈ A,

g(x) = supy∈Af(x, y)

is convex in x.
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Example 1

• f : x 7→ max{a>1 x+ b1, · · · , a>mx+ bm} is convex.

• Let x ∈ Rn and x[i] be the ith largest component of x. Then f(x) =
∑r
i=1 x[i] is convex.

(proof)

f(x) = max{xi1 + · · ·+ xir : 1 ≤ i1 < · · · < ir ≤ n}

Since f(x) is the maximum of affine functions, f is convex.

Check the convexity of f(x) =
∑r
i=1 wix[i].
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Example 2 (Distance to the farthest point of a set)

Let C ⊂ Rn.

f(x) = sup
y∈C
‖x− y‖

is convex.

(proof) g(x, y) = ‖x− y‖ is convex. Thus, supy∈C g(x, y) is convex.
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Example 3 (Maximum eigenvalue of a symmetric matrix)

f : X ∈ Sm 7→ λmax(X) ∈ R.

f(X) = sup{y>Xy : ‖y‖ = 1}

Let g : (X, y) ∈ Sn × Rm 7→ y>Xt ∈ R, then g(X, y) is linear for a fixed y. Thus, f is a

pointwise maximum of g(X, y), and it is convex.
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Definition 4 (convex optimization problem)

• f0 : Rn 7→ R is convex function.

• C = {x ∈ Rn : fi(x) ≤ 0, hj(x) = 0 for all i, j ≥ 1} is convex set where fi, hj : Rn → R.

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · , p,
hj(x) = 0 j = 1, · · · ,m.
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Note that

• If fi is convex then {x : fi(x) ≤ 0} is convex set.

• If hj is affine then {x : hj(x) = 0} is convex set.

• Any finite intersection of convex sets is convex.
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Example 5 (See the proof in p.73–74)

• Quadratic over linear function (convex): f(x, y) = x2/y, with

domf = R× R++

• Log-sum-exp (convex): f(x) = log(ex1 + · · ·+ exn)

• Geometric mean (concave)

• Log-determinant (concave)
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proof of Geometric mean f : x ∈ Rn++ 7→ (
∏n
i=1 xi)

1/n ∈ R is concave.

∂f(x)

∂xj
=

∏
i 6=j

x
1/n
i × 1

n
x
1/n−1
j =

(
1

n

n∏
i=1

x
1/n
i

)
1

xj
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∂x2j
= − 1

n

(n− 1)

n

∏
i6=j

x
1/n
i x
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n
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n∏
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x
1/n
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)
1

x2j
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Let z = (z1, · · · , zn)> = (1/x1, · · · , 1/xn)> then

∇2f(x) = − 1

n2
(
ndiag(z21 , · · · , z2n)− zz>

)
Let a = (a1, · · · , an) and v = (a1z1, · · · , anzn) then

a>∇2f(x)a = − 1

n2

(
n

n∑
i=1

a2i z
2
i − (

n∑
i=1

aizi)
2

)

= − 1

n2
(
‖1‖2‖v‖2− < 1, v >2

)
≤ 0

The inequality holds by Cauchy inequality. Therefore f is concave.
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Example 6 (Linear regression)

Let (yi, xi) ∈ R×Rp for i = 1, · · · , n be response-covariate pairs and the objective function of

linear regression is given by

L(β) =
1

2

n∑
i=1

(yi − x>i β)2

=
1

2
β>(

n∑
i=1

xix
>
i )β − (

n∑
i=1

yixi)
>β +

1

2

n∑
i=1

y2i .

Let A = (
∑n
i=1 xix

>
i ), b =

∑n
i=1 yixi and c = 1

2

∑n
i=1 y

2
i then

L(β) =
1

2
β>Aβ − b>β + c,

a quadratic function.
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A is semi-positive definite because

u>(

n∑
i=1

xix
>
i )u =

n∑
i=1

(x>i u)
>(x>i u) =

n∑
i=1

‖x>i u‖2 ≥ 0

for all u ∈ Rp. Thus, L(β) is convex.
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Example 7 (Logistic regression)

Let (yi, xi) ∈ {0, 1} × Rp for i = 1, · · · , n be response-covariate pairs and the objective

function (negative loglikelihood) is given by

L(β) = −
n∑
i=1

yix
>
i β +

n∑
i=1

log(1 + exp(x>i β)).

The hessian matrix of L(β) is

H(β) =

n∑
i=1

(
xix
>
i

exp(x>i β)

(1 + exp(x>i β))

1

(1 + exp(x>i β))

)
.
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Let p(xi;β) =
exp(x>

i β)

(1+exp(x>
i β))

.

u>H(β)u =

n∑
i=1

u>
(
xix
>
i p(xi;β)(1− p(xi;β))

)
u>

=
∑
i

‖
√
p(xi;β)(1− p(xi;β)x>i u‖2

≥
(
min
i
{p(xi;β)(1− p(xi;β)}

)∑
i

‖x>i u‖2 ≥ 0,

for all u.
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Example 8 (Linear support vector machine)

Let (yi, xi) ∈ { − 1, 1} × Rp for i = 1, · · · , n be response-covariate pairs and the objective

function is given by

Lλ(β) =

n∑
i=1

max(0, 1− yix>i β) + λ

p∑
j=1

β2
j

Since l(t) = max(0, t) is convex, it is easily shown that Lλ(β) is convex.
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Definition 9 (Conjugate function)

Let f : Rn 7→ R. f∗ : Rn 7→ R is defined as

f∗(y) = sup
x∈dom(f)

(y>x− f(x))

• f∗ is always convex.

• If f is convex and closed, then f∗∗ = f .

Department of Statistics, University of Seoul Convex Optimization Problem IV 23 / 34



Example 10

• f(x) = ax+ b: dom(f∗) = {a} and f∗(y) = −b
• f(x) = exp(x): f∗(y) = y log y − y with dom(f∗) = R+

• f(x) = (1/2)x>Qx with Q ∈ Sn++: f∗(y) = (1/2)y>Q−1y
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Theorem 11 (Fenchel inequality)

f(x) + f∗(y) ≥ x>y

for all x, y. This is called Fenchel’s inequality.

Example 12

f(x) = (1/2)x>Qx with Q ∈ Sn++. Then,

x>y ≤ (1/2)x>Qx+ (1/2)y>Q−1y
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If f is convex and differentiable. Let x∗ be maximizer of y>x − f(x) satisfying y = ∇f(x∗).
Then,

f∗(y) = x∗>∇f(x∗)− f(x∗)

Thus, by solving y = f(z) for each y, we can obtain f∗(y) = z>∇f(z)− f(z).
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1. For a > 0 and b ∈ R the conjugate function of g(x) = af(x) + b is

g∗(y) = af∗(y/a)− b

2. For a nonsingular A ∈ Rn×n and b ∈ Rn let g(x) = f(Ax+ b).

g∗(y) = f∗(A−>y)− b>A−>y

3. If f(u, v) = f1(u) + f2(v), where f1 and f2. Then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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(proof of 2)

g∗(y) = sup
x

(
y>x− f(Ax+ b)

)
= sup

x
y>
(
A−1(Ax+ b)− y>A−1b− f(Ax+ b)

)
= sup

x

(
(A−>y)>(Ax+ b)− f(Ax+ b)

)
− y>A−1b

= f∗(A−>y)− b>A−>y
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Definition 13 (Quasiconvex function)

• A function f : Rn 7→ R is called quasiconvex if

Sα(f) = {x ∈ dom(f) : f(x) ≤ α}

for α ∈ R is convex.

• If −f is quasiconvex, then f is called quasiconcave.

• If f is quasiconvex and quasiconcave as well, then f is called quasilinear.
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• If f is convex, f is quasiconvex.

• f is quasiconvex if and only if {x : f(x) ≥ α} is convex.

• f is quasilinear then {x : f(x) = α} is convex.
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Proposition 1 (Definition of the quasiconvex function)

Sα(f) is convex if and only if

f(λx+ (1− λ)y) ≤ max(f(x), f(y))

for λ ∈ [0, 1].

(proof →) For arbitrary x and y, let α = max(f(x), f(y)). By definition of α-level set, x, y ∈
Sα(f). Since Sα(f) is convex, λx + (1 − λ)y) ∈ Sα(f). Thus, f(λx + (1 − λ)y) ≤ α =

max(f(x), f(y)). The converse is trivial.
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Example 14

• log x on R++ is quasiconvex and quasiconcave. So it is quasilinear.

• ceil(x) = inf{z ∈ Z : z ≥ z} is quasiconvex and quasiconcave.

• Linear-fractional function:

f(x) =
a>x+ b

c>x+ d

with dom(f) = {x : c>x+ d > 0} is quasiconvex and quasiconcave.
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HW

Prove the following statements.

• Support function SC associated with the set C is defined as

SC(x) = sup{x>y : y ∈ C}

is convex.

• Let f : Rn 7→ R and define

f∗ : y ∈ Rn 7→ sup{x>y − f(x)},

the conjugate function of f . Then, f∗ is always convex.
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HW

Prob set. Ch3

• 3.4-3.7

• 3.12, 3.13

• 3.21-3.23

• 3.26, 3.28, 3.30, 3.31

• 3.42, 3.43
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