Convex Optimization Problem IV

Jong-June Jeon

Fall, 2023

Department of Statistics, University of Seoul

Things to know

- Operation preserving convexity
- Examples of convex functions
- Quasiconvex function

Operations preserving convexity

Nonnegative weighted sums

If f_i for $i = 1, \dots, m$ are convex and $w_i \ge 0$, then $g(x) = \sum_{i=1}^m w_i f_i(x)$ is convex.

If f(x,y) is convex in x for each $y \in A$, and $w(y) \ge 0$ for each $y \in A$, then

$$g(x) = \int_{\mathcal{A}} w(y) f(x, y) dy$$

is convex in x.

Let $w_i \ge 0$ then $w_i f_i(\lambda x + (1 - \lambda)y) \le \lambda w_i f_i(x) + (1 - \lambda)w_i f_i(y)$ for all i and $\lambda \in [0, 1]$.

$$g(\lambda x + (1 - \lambda)y) = \sum_{i} w_{i}f_{i}(\lambda x + (1 - \lambda)y)$$

$$\leq \sum_{i} \lambda w_{i}f_{i}(x) + (1 - \lambda)w_{i}f_{i}(y)$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

Composition with an affine mapping

Let $f : \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $b \in \mathbb{R}^n$. If f is convex, then

g(x) = f(Ax + b)

is also convex.

Pointwise maximum function and supremum

If f_1 and f_2 are convex, then $f(x) = \max(f_1(x), f_2(x))$ with $\operatorname{dom}(f) = \operatorname{dom}(f_1) \cap \operatorname{dom}(f_2))$ is convex. Generally, if f_1, \dots, f_m are convex, then

$$f(x) = \max(f_1(x), \cdots, f_m(x))$$

is convex.

(proof) $f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$ for all i and $\lambda \in [0, 1]$.

f(

$$\begin{aligned} \lambda x + (1 - \lambda)y) &= \max_{i} f_{i}(\lambda x + (1 - \lambda)y) \\ &\leq \max_{i} \lambda f_{i}(x) + (1 - \lambda)f_{i}(y) \\ &\leq \max_{i} \lambda f_{i}(x) + \max_{i} (1 - \lambda)f_{i}(y) \\ &= \lambda \max_{i} f_{i}(x) + (1 - \lambda) \max_{i} f_{i}(y) \\ &= \lambda f(x) + (1 - \lambda)f(y), \end{aligned}$$

Pointwise maximum and supremum

If f(x,y) is convex in x for each $y \in \mathcal{A}$,

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex in x.

Example 1

• $f: x \mapsto \max\{a_1^\top x + b_1, \cdots, a_m^\top x + b_m\}$ is convex.

• Let $x \in \mathbb{R}^n$ and $x_{[i]}$ be the *i*th largest component of x. Then $f(x) = \sum_{i=1}^r x_{[i]}$ is convex.

(proof)

$$f(x) = \max\{x_{i_1} + \dots + x_{i_r} : 1 \le i_1 < \dots < i_r \le n\}$$

Since f(x) is the maximum of affine functions, f is convex.

Check the convexity of $f(x) = \sum_{i=1}^{r} w_i x_{[i]}$.

Example 2 (Distance to the farthest point of a set)

Let $C \subset \mathbb{R}^n$.

$$f(x) = \sup_{y \in C} \|x - y\|$$

is convex.

(proof) g(x,y) = ||x - y|| is convex. Thus, $\sup_{y \in C} g(x,y)$ is convex.

Example 3 (Maximum eigenvalue of a symmetric matrix)

 $f: X \in \mathcal{S}^m \mapsto \lambda_{max}(X) \in \mathbb{R}.$

$$f(X) = \sup\{y^{\top} X y : ||y|| = 1\}$$

Let $g: (X, y) \in S^n \times \mathbb{R}^m \mapsto y^\top X t \in \mathbb{R}$, then g(X, y) is linear for a fixed y. Thus, f is a pointwise maximum of g(X, y), and it is convex.

Definition 4 (convex optimization problem)

• $f_0 : \mathbb{R}^n \mapsto \mathbb{R}$ is convex function.

• $C = \{x \in \mathbb{R}^n : f_i(x) \le 0, h_j(x) = 0 \text{ for all } i, j \ge 1\}$ is convex set where $f_i, h_j : \mathbb{R}^n \to \mathbb{R}$.

minimize $f_0(x)$ subject to $f_i(x) \le 0$, $i = 1, \dots, p$, $h_j(x) = 0$ $j = 1, \dots, m$.

Note that

- If f_i is convex then $\{x : f_i(x) \le 0\}$ is convex set.
- If h_j is affine then $\{x : h_j(x) = 0\}$ is convex set.
- Any finite intersection of convex sets is convex.

Example 5 (See the proof in p.73–74)

• Quadratic over linear function (convex): $f(x,y) = x^2/y$, with

 $\mathsf{dom} f = \mathbb{R} \times \mathbb{R}_{++}$

- Log-sum-exp (convex): $f(x) = \log(e^{x_1} + \dots + e^{x_n})$
- Geometric mean (concave)
- Log-determinant (concave)

proof of Geometric mean $f: x \in \mathbb{R}^n_{++} \mapsto (\prod_{i=1}^n x_i)^{1/n} \in \mathbb{R}$ is concave.

$$\begin{aligned} \frac{\partial f(x)}{\partial x_j} &= \prod_{i \neq j} x_i^{1/n} \times \frac{1}{n} x_j^{1/n-1} = \left(\frac{1}{n} \prod_{i=1}^n x_i^{1/n}\right) \frac{1}{x_j} \\ \frac{\partial^2 f(x)}{\partial x_j^2} &= -\frac{1}{n} \frac{(n-1)}{n} \prod_{i \neq j} x_i^{1/n} x_j^{1/n-2} = -\left(\frac{1}{n} \frac{(n-1)}{n} \prod_{i=1}^n x_i^{1/n}\right) \frac{1}{x_j^2} \\ \frac{\partial^2 f(x)}{\partial x_j \partial x_k} &= \frac{1}{n^2} \left(\prod_{i=1}^n x_i^{1/n}\right) \frac{1}{x_j} \frac{1}{x_k} \end{aligned}$$

Let
$$z = (z_1, \cdots, z_n)^\top = (1/x_1, \cdots, 1/x_n)^\top$$
 then

$$\nabla^2 f(x) = -\frac{1}{n^2} \left(n \operatorname{diag}(z_1^2, \cdots, z_n^2) - z z^\top \right)$$

Let $a = (a_1, \cdots, a_n)$ and $v = (a_1 z_1, \cdots, a_n z_n)$ then

$$a^{\top} \nabla^2 f(x) a = -\frac{1}{n^2} \left(n \sum_{i=1}^n a_i^2 z_i^2 - (\sum_{i=1}^n a_i z_i)^2 \right)$$
$$= -\frac{1}{n^2} \left(\|1\|^2 \|v\|^2 - \langle 1, v \rangle^2 \right) \le 0$$

The inequality holds by Cauchy inequality. Therefore f is concave.

Example 6 (Linear regression)

Let $(y_i, x_i) \in \mathbb{R} \times \mathbb{R}^p$ for $i = 1, \dots, n$ be response-covariate pairs and the objective function of linear regression is given by

$$L(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$$

= $\frac{1}{2} \beta^{\top} (\sum_{i=1}^{n} x_i x_i^{\top}) \beta - (\sum_{i=1}^{n} y_i x_i)^{\top} \beta + \frac{1}{2} \sum_{i=1}^{n} y_i^2.$

Let $A = (\sum_{i=1}^n x_i x_i^\top)$, $b = \sum_{i=1}^n y_i x_i$ and $c = \frac{1}{2} \sum_{i=1}^n y_i^2$ then

$$L(\boldsymbol{\beta}) = \frac{1}{2}\boldsymbol{\beta}^{\top} A \boldsymbol{\beta} - b^{\top} \boldsymbol{\beta} + c_{s}$$

a quadratic function.

 \boldsymbol{A} is semi-positive definite because

$$u^{\top} (\sum_{i=1}^{n} x_i x_i^{\top}) u = \sum_{i=1}^{n} (x_i^{\top} u)^{\top} (x_i^{\top} u) = \sum_{i=1}^{n} \|x_i^{\top} u\|^2 \ge 0$$

for all $u \in \mathbb{R}^p$. Thus, $L(\beta)$ is convex.

Example 7 (Logistic regression)

Let $(y_i, x_i) \in \{0, 1\} \times \mathbb{R}^p$ for $i = 1, \dots, n$ be response-covariate pairs and the objective function (negative loglikelihood) is given by

$$L(\boldsymbol{\beta}) = -\sum_{i=1}^{n} y_i x_i^{\top} \boldsymbol{\beta} + \sum_{i=1}^{n} \log(1 + \exp(x_i^{\top} \boldsymbol{\beta})).$$

The hessian matrix of $L(\pmb{\beta})$ is

$$H(\boldsymbol{\beta}) = \sum_{i=1}^{n} \left(x_i x_i^{\top} \frac{\exp(x_i^{\top} \boldsymbol{\beta})}{(1 + \exp(x_i^{\top} \boldsymbol{\beta}))} \frac{1}{(1 + \exp(x_i^{\top} \boldsymbol{\beta}))} \right).$$

Let
$$p(x_i; \beta) = \frac{\exp(x_i^\top \beta)}{(1 + \exp(x_i^\top \beta))}$$
.

$$u^{\top} H(\beta) u = \sum_{i=1}^{n} u^{\top} \left(x_{i} x_{i}^{\top} p(x_{i};\beta) (1 - p(x_{i};\beta)) \right) u^{\top}$$

$$= \sum_{i} \| \sqrt{p(x_{i};\beta) (1 - p(x_{i};\beta))} x_{i}^{\top} u \|^{2}$$

$$\geq \left(\min_{i} \{ p(x_{i};\beta) (1 - p(x_{i};\beta)) \} \right) \sum_{i} \| x_{i}^{\top} u \|^{2} \ge 0.$$

for all u.

Example 8 (Linear support vector machine)

Let $(y_i, x_i) \in \{-1, 1\} \times \mathbb{R}^p$ for $i = 1, \cdots, n$ be response-covariate pairs and the objective function is given by

$$L_{\lambda}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \max(0, 1 - y_i x_i^{\top} \boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \beta_j^2$$

Since $l(t) = \max(0, t)$ is convex, it is easily shown that $L_{\lambda}(\beta)$ is convex.

Definition 9 (Conjugate function)

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$. $f^* : \mathbb{R}^n \mapsto \mathbb{R}$ is defined as

$$f^*(y) = \sup_{x \in \mathsf{dom}(f)} (y^\top x - f(x))$$

- f^* is always convex.
- If f is convex and closed, then $f^{**} = f$.

Example 10

•
$$f(x) = ax + b$$
: dom $(f^*) = \{a\}$ and $f^*(y) = -b$

•
$$f(x) = \exp(x)$$
: $f^*(y) = y \log y - y$ with dom $(f^*) = \mathbb{R}_+$

•
$$f(x) = (1/2)x^\top Qx$$
 with $Q \in \mathcal{S}^n_++: f^*(y) = (1/2)y^\top Q^{-1}y$

Theorem 11 (Fenchel inequality)

$$f(x) + f^*(y) \ge x^\top y$$

for all x, y. This is called Fenchel's inequality.

Example 12

$$f(x)=(1/2)x^\top Qx$$
 with $Q\in \mathcal{S}^n_{++}.$ Then,
$$x^\top y\leq (1/2)x^\top Qx+(1/2)y^\top Q^{-1}y$$

If f is convex and differentiable. Let x^* be maximizer of $y^{\top}x - f(x)$ satisfying $y = \nabla f(x^*)$. Then,

$$f^*(y) = x^{*\top} \nabla f(x^*) - f(x^*)$$

Thus, by solving y = f(z) for each y, we can obtain $f^*(y) = z^{\top} \nabla f(z) - f(z)$.

1. For a > 0 and $b \in \mathbb{R}$ the conjugate function of g(x) = af(x) + b is

$$g^*(y) = af^*(y/a) - b$$

2. For a nonsingular $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ let g(x) = f(Ax + b).

$$g^*(y) = f^*(A^{-\top}y) - b^{\top}A^{-\top}y$$

3. If $f(u, v) = f_1(u) + f_2(v)$, where f_1 and f_2 . Then

 $f^*(w,z) = f_1^*(w) + f_2^*(z)$

(proof of 2)

$$g^{*}(y) = \sup_{x} \left(y^{\top}x - f(Ax+b) \right)$$

= $\sup_{x} y^{\top} \left(A^{-1}(Ax+b) - y^{\top}A^{-1}b - f(Ax+b) \right)$
= $\sup_{x} \left((A^{-\top}y)^{\top}(Ax+b) - f(Ax+b) \right) - y^{\top}A^{-1}b$
= $f^{*}(A^{-\top}y) - b^{\top}A^{-\top}y$

Definition 13 (Quasiconvex function)

• A function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is called quasiconvex if

$$S_{\alpha}(f) = \{ x \in \mathsf{dom}(f) : f(x) \le \alpha \}$$

for $\alpha \in \mathbb{R}$ is convex.

- If -f is quasiconvex, then f is called quasiconcave.
- If f is quasiconvex and quasiconcave as well, then f is called quasilinear.

- If f is convex, f is quasiconvex.
- f is quasiconvex if and only if $\{x : f(x) \ge \alpha\}$ is convex.
- f is quasilinear then $\{x : f(x) = \alpha\}$ is convex.

Proposition 1 (Definition of the quasiconvex function)

 $S_{\alpha}(f)$ is convex if and only if

 $f(\lambda x + (1 - \lambda)y) \le \max(f(x), f(y))$

for $\lambda \in [0, 1]$.

(proof \rightarrow) For arbitrary x and y, let $\alpha = \max(f(x), f(y))$. By definition of α -level set, $x, y \in S_{\alpha}(f)$. Since $S_{\alpha}(f)$ is convex, $\lambda x + (1 - \lambda)y) \in S_{\alpha}(f)$. Thus, $f(\lambda x + (1 - \lambda)y) \leq \alpha = \max(f(x), f(y))$. The converse is trivial.

Example 14

- $\log x$ on \mathbb{R}_{++} is quasiconvex and quasiconcave. So it is quasilinear.
- $\operatorname{ceil}(x) = \inf\{z \in Z : z \ge z\}$ is quasiconvex and quasiconcave.
- Linear-fractional function:

$$f(x) = \frac{a^{\top}x + b}{c^{\top}x + d}$$

with dom $(f) = \{x : c^{\top}x + d > 0\}$ is quasiconvex and quasiconcave.

Prove the following statements.

• Support function S_C associated with the set C is defined as

 $S_C(x) = \sup\{x^\top y : y \in C\}$

is convex.

• Let $f: \mathbb{R}^n \mapsto \mathbb{R}$ and define

$$f^*: y \in \mathbb{R}^n \mapsto \sup\{x^\top y - f(x)\},\$$

the conjugate function of f. Then, f^* is always convex.

Prob set. Ch3

- 3.4-3.7
- 3.12, 3.13
- 3.21-3.23
- 3.26, 3.28, 3.30, 3.31
- 3.42, 3.43